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Abstract

In this paper, an extensive behavioural study of cable vibrations, induced by in-plane stochastic cable-
stayed structural vibrations, is made. Finite element modelling (FEM) and analysis (FEA) is used to
determine in-plane and out-of-plane cable displacements induced by stochastic cable end displacements.
The effects of stochastic cable support displacements, with abrupt and gradual transients, are studied.
Regions of large-amplitude cable vibrations, induced by stochastic cable end displacements, are compared
with those found from sinusoidal cable end displacements. The results show that, together with important
similarities in cable response, there are also important differences in cable response between sinusoidal and
stochastic cable support excitation. Differences in cable response amplitudes are found and discussed. It is
also found that ‘‘cable-stiffening’’ occurs, for specific cable excitation parameters, as it does for sinusoidal
cable support excitation, but to a lesser extent. Throughout the analyses, maximum cable stresses are
calculated and, in some cases, are found to be near that required for cable material yielding.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past 50 years there has been an ever-growing interest in the dynamics of cables. This
has been mainly due to the large increase in the design and construction of various types of cable
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

l total length of cable
t dimensional time
x distance along the cable
E material modulus of elasticity
A cross-sectional area of cable
g gravitational acceleration
y angle of inclination of the cable
D cable diameter
m mass per unit length of cable
M mass of cable support or mass–-

spring–dashpot damper system
Nc cable tension at mid-span
�initxx cable initial strain
Dmax maximum vertical cable support

displacement
Dbridge
max maximum expected vertical bridge

(cable end) displacement
DðtÞ time-dependant displacement of

cable support or mass–spring–dash-
pot damper system

Drms rms displacement value
onl
1 in-plane first circular frequency due

to cable sag
ok cable’s modal frequencies
o circular frequency of cable support

or mass–spring–dashpot damper
system

od damped circular frequency of cable

support or mass–spring–dashpot
damper system

O cable support excitation frequency
xpk aerodynamic parallel to wind damp-

ing ratios of cable
xnk aerodynamic normal to wind damp-

ing ratios of cable
x damping ratio
b nondimensional cable support dis-

placement parameter
pðtÞ white noise signal function
u in-plane cable displacement
r density of air
Cd cable drag coefficient
V wind velocity
e relative energy coefficient
sy;smax cable material yield stress and max-

imum observed stress respectively
Ek

stoch, Ek
sin stochastic and sinusoidal support
excitation kinetic energies, respec-
tively

Ei
stoch, Ei

sin stochastic and sinusoidal support
excitation relative input energies,
respectively

Definition of coefficients

o1 ¼ ðvtpÞ
2

v2t ¼ Nc=ðmgl cos yÞ
v2l ¼ EA=ðmgl cos yÞ
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supported structures. Until the early 20th century, high tensile strength steels were unavailable for
the construction of large engineering structures such as cable-stayed bridges. It was only with the
introduction of these steels that engineers were finally able to design and create large cable-
supported structures.
There are now thousands of large cable-supported structures world-wide. Many of these

structures, although, occasionally exhibit undesirable large amplitude cable vibrations. Most
small to medium amplitude cable vibrations can be attributed to wind or wind-rain/ice-induced
mechanisms, through flutter, buffeting, vortex-shedding or galloping [1–4]. These mechanisms are
fairly well understood and engineers are continuously developing effective countermeasures,
for the suppression of these vibrations. The mechanisms behind some of the cable vibrations,
though, especially large-amplitude cable vibrations, are still not completely understood.
In an attempt to understand these vibrations, researchers have focused on the cable’s linear and
nonlinear dynamics.
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Irvine and Caughey [5,6] studied the free vibrations of cables, using linear equations of motion,
while Takahashi and Konishi [7,8] managed to locate unstable regions, in which cables exhibit
large in-plane and out-of-plane vibrations, using nonlinear equations of motion. Others [9–14]
have followed with similar studies using sinusoidal time-varying cable support displacements.
Georgakis et al. [15] studied displacement levels and varying initial conditions to see what effect
these had on the dynamics of a cable, while at the same time, looking at periodic, quasi-periodic
and chaotic cable vibrations.
In all of the above-mentioned theoretical studies, a cable of finite length, with a uniformly

distributed mass and a relatively small sag-to-span ratio, is examined, always under the influence
of sinusoidal cable end displacements. The cable is placed horizontally between two supports at
the same or at different levels. Three partial differential equations (PDEs), describing the motion
of the cable along its axis, in-plane and out-of-plane are transformed into ordinary differential
equations (ODEs) using the Galerkin or other similar de-coupling methods [7–15]. The PDEs are
de-coupled when the acceleration term of the equation of motion, describing the cable’s along-axis
excitation, is equated to zero. The derived nonlinear equations of motion consider the parabolic
shape of the cable under the influence of gravity. Finally, approximate solutions for the ODEs are
found and the results are, when possible, compared to observations from actual and experimental
cable vibrations.
In none of the previous studies has the effect of stochastic cable support excitation been studied

in any detail, though. The aim of the study presented here is to provide further insights into the
dynamics of cables subjected to stochastic support excitation.
All of the analyses presented here were performed through FEM with readily available software

packages. The nonlinear equations of motion of the hanging cable [15] were not deemed
appropriate for these analyses, as their integration for stochastic excitation proved to be
uneconomical. It was assumed throughout the analyses that the cable behaved elastically and, as
such, the total cable stresses were continuously monitored.
Examination of the results, obtained from the stochastic cable support excitation, show that

stochastic excitation can induce very different cable vibrations from those that one might expect
from a sinusoidal cable support excitation. A full comparison of the results is presented in the
following sections.
Note that a full statistical study regarding the stochastic time-histories and the cable’s response

was not carried out, as the purpose of this work was not to examine all possible stochastic time-
histories or the probability of a specific cable response outcome. It was clear from the onset of this
work that a general picture of the cable’s response to a stochastic end displacement could be
achieved with a limited number of input time-histories.
2. Selection of cable parameters

Due to the infinite number of damping values and angles of inclination that a cable
may take, several values were selected to represent typical cables on existing structures,
these mainly being cable-stayed bridges. These were then analysed and results were
examined. It was evident from the analysis that zones of large-amplitude cable
vibrations, do tend to change with varying angles of inclination, when the geometric
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nonlinearity of the cable lessens, as the angle of inclination moves towards 901. Also,
the onset of these regions of large-amplitude cable vibrations required higher
amplitudes of cable end excitation as the damping of the cable increases, as observed by
Mathieu using simplified equations [16]. It was decided that, due to the variety of
results, one cable with one angle of inclination and two (2) different damping levels
would be presented here as a typical example of an actual cable-stay. The selection of
specific parameters leaves scope for further research, to investigate a fuller range of cable
parameters.
The cable chosen is similar to one of the longest stays of the cable-stayed Second Severn

Crossing bridge, UK, and will be referred to as cable A. Cable A has a length of 244.4m, a steel
cross-sectional area of 11250mm2 and an angle of inclination of 20.31. The cable’s structural
damping has been estimated by Macdonald [17], from on-site measurements, to be about 0.05%.
Its mass per unit length is 123.24 kg/m. A typical cable stay will have an average damping value of
about 0.1% [17,18].
To suit future laboratory experiments, these quantities have been scaled-down by a

ratio of 1:114. All of the structural quantities are scaled by this ratio except for the mass per
unit length quantities, which were scaled so that the cable under examination has scaled
natural frequencies equal to those of the bridge stay. The scaled quantities were then used for the
FEA. Also, it has been estimated that the total static tension of the prototype cable-stay was
about 30% of that required for material yielding [17]. This quantity is also scaled so that the total
tension in the scaled cable is equal to approximately 30% of the force required for material
yielding.
3. FEA software and model

Finite element modelling (FEM) and analysis was realised using the SOLVIA Finite
Element System [19]. The FEM comprises of ten, linked, truss elements (Fig. 1), which
create a scaled cable, 2.086m long. Both cable end supports are fixed. The static tension
of the cablewas 91.215N and its cross-section area is 2.027� 10�7m2. The static
tension of the cable is due to the cable’s own weight and a pre-tension that was
imposed by applying an initial strain of �initxx ¼ 0:002: The mass of 0.4047 kg/m is uniformly
distributed along the cable and the cable has a material modulus of elasticity of E ¼ 1:95�
1011 N=m2: Nonlinear analysis was used for the static analysis, which determined the
maximum cable sag to be 0.022094m (Fig. 1). Nonlinear dynamic analyses were then
performed for the analyses of the cable’s responses to various stochastic support
excitations. The cable’s first natural in-plane circular frequency onl

1 can be theoretically
calculated, according to Perkins [14], by finding the roots of the equation

tan
onl
1

2vt

�
onl
1

2vt

þ
ðonl

1 vtÞ
3

2v2l
¼ 0; ð1Þ

where coefficients vt and vl are defined in the nomenclature.
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Fig. 1. Single-degree-of-freedom structure with mass, spring and dashpot damper attached to cable with 10 linked truss

elements.
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Finite element modal analysis, following a nonlinear static analysis, found that the first in-plane
nonlinear natural frequency of the cable is 4.061Hz. The theoretical first in-plane nonlinear
natural frequency of the cable, as calculated by Eq. (1) is 4.086Hz.
4. Stochastic support excitation

4.1. Synthetic stochastic time-histories

It was considered important that the stochastic excitation, which was to be imposed on the
cables, be representative of a prototype stochastic time-history that might be imposed on a stay by
a full-scale cable structure such as a cable-stayed bridge. Even though an approximation, cable
structures, such as telecommunications masts and cable-stayed bridges, are subject to random
wind forces, which have time-histories that are very similar to random normal distribution white
noise signals, for the low-frequency bandwidth under examination. A cable-stayed bridge or other
similar structure will act as a signal filter, by filtering wind signals (or white noise signals) through
its own structural characteristics. The resulting dynamic response input will be the actual response
of the structure to the wind load. This filtered signal or structural response can then be used as a
stochastic time-history (stochastic support excitation) for the examination of a cable’s nonlinear
response to that time-history. As the wind will have varying characteristics, such as wind speed
and wind direction, the force acting on the structure will also have varying characteristics. These
will excite the structure at different frequencies with varying amplitudes of force. In most cases the
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wind will have the effect of exciting one structural frequency (or mode) more than others [17]. As
such, it was deemed appropriate that the stochastic signals, created for the examination of the
nonlinear response of a cable, be equivalent to the response of the structure that the cable is
supporting with specific frequency content. Cable-structure interaction was not examined
herewith, but will be presented in a subsequent paper.
To create these synthetic time-histories, a cable-stayed bridge with specific structural

characteristics was considered and modelled as a linear mass–spring–dashpot damper system
(Fig. 1). A normal distribution white noise signal was imposed as a wind force on this system. The
response DðtÞ of the bridge (linear system) was calculated through the Duhamel integral [20]. The
integral for an under-critically damped system will be

DðtÞ ¼
1

Mod

Z t

0

pðtÞsin odðt � tÞexp½�xoðt � tÞ� dt: ð2Þ

As the response of the structure is normalised to a unit of one, the mass, M; of the structure
becomes irrelevant in the calculation of the system’s response. The circular frequency O; which is
the excitation frequency parameter used for the examination of the cable, is equated to the
circular frequency of the linear system. Thus

o ¼ O: ð3Þ

The damped frequency of the system will be

od ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
; ð4Þ

where x is the damping ratio of the system. pðtÞ is the normal distribution white noise signal.
Following [20], Eq. (2) can be written as

DðtÞ ¼ AðtÞ sin odt � BðtÞ sin odt; ð5Þ

where

AðtÞn ¼ AðtÞn�1 expð�xodtÞ þ
dt
od

½ya
n�1 expð�xodtÞ� ð6Þ

and

BðtÞn ¼ BðtÞn�1 expð�xodtÞ þ
dt
od

½yb
n�1 expð�xodtÞ� ð7Þ

and where

ya
nðtÞ ¼ pðtÞ sin odt; yb

nðtÞ ¼ pðtÞ cos odt ð8; 9Þ

and

ya
n�1ðtÞ ¼ pðtÞ sin odðt � 1Þ; yb

n�1ðtÞ ¼ pðtÞ cos odðt � 1Þ: ð80; 90Þ

In Eqs. (2)–(9), t is time and dt is the time increment or time step for the integration.
The selection of an analysis time-step was based on the calculated structural frequencies and the

estimated structural response frequencies. A general rule is that the dynamic analyses time-step
should be one-twentieth 1

20

� �
that of the inverse of the highest structural frequency under

examination. For this particular problem, the time step dt was chosen to be dt ¼ 0:005 s: The
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system-damping ratio x was determined to be x ¼ 0:003; as this is an estimate of the typical
average damping ratio that a cable-stayed bridge, such as the Second Severn Crossing, exhibits
[17]. The duration of the signal t varied, as various lengths of time-histories were used for the
analyses of the response of the cable. The average time-history length is about t ¼ 120 s: Much
longer time-histories were also used to examine whether or not a maximum cable displacement
could occur beyond the two-minute mark. Fig. 2 represents a typical normal distribution white
noise signal or linear system wind load. Fig. 3 represents the response of the linear system to the
white noise (wind load), normalised to a unit of one. Fig. 4 shows the linear system frequency
response, as calculated by the Duhamel integral. Figs. 5a and b represent system responses using
alternative white noise signals. Figs. 3, 5a and b also represent typical synthetic stochastic cable
support excitations, which were used for the analysis of the cables nonlinear response. In each
of these figures, the dominant frequency represents the frequency at which the linear
mass–spring–dashpot damper system was tuned to. Fig. 6 is a schematic of the procedure for
the derivation of the synthetic stochastic input signals.
As has been previously mentioned, the cable was modelled using finite elements, which were

then used to investigate regions of large-amplitude cable vibrations in a two-dimensional
parameter space—excitation circular frequency O and a parameter b: In Ref. [15], parameter b is a
function of the maximum amplitude of the sinusoidal support excitation and is defined by Eq.
(10). Here b represents a similar quantity only that now it is a function of the maximum excitation
amplitude that can be found throughout the synthetic stochastic time-history, i.e. the normalised
synthetic stochastic time-history is multiplied by Dmax: Several analyses for comparison, using
like-for-like sinusoidal vs. stochastic root mean square (RMS) values, were also performed and
Fig. 2. Random normal distribution ‘‘white noise’’ signal.
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Fig. 3. Segment of nortmalised response of sdof structure used as stochastic input for cable A.

Fig. 4. Power spectra density of stochastic cable input signal for 4.087Hz.

C.T. Georgakis, C.A. Taylor / Journal of Sound and Vibration 281 (2005) 565–591572
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Fig. 5. (a) Segment of example synthetic stochastic record used for cable response analysis. (b) Segment of example

synthetic stochastic record used for cable response analysis.

C.T. Georgakis, C.A. Taylor / Journal of Sound and Vibration 281 (2005) 565–591 573
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Fig. 6. Schematic of stochastic cable analysis procedure (a) ‘‘white noise’’ signal is filtered through sdof cable supported

system with specific dynamic characteristics; (b) sdof produces desired synthetic response; (c) synthetic response is used

on cable as synthetic stochastic support record; (d) final cable response is obtained.
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are presented in a following section.

b ¼
5p

ffiffiffiffiffiffiffiffiffiffiffiffi
EA=m

p
o1

 !
Dmax

l2

	 

: ð10Þ

Again, the coefficients of Eq. (10) are defined in the nomenclature.
4.2. Regions of large amplitude cable vibrations

To investigate the large-amplitude cable vibrations, in the parameter plane O2b; two damping
values for the cable were chosen. The structural damping of the cable is estimated, as previously
mentioned, to be about 0.05%. A series of analyses with this value were performed with the
synthetic stochastic time-histories and the results were then compared to those found from the
analyses of the cable with both structural and aerodynamic damping.
Aerodynamic damping was calculated theoretically, according to Virlogeux [18]. When a cable

is moving parallel to the wind, its aerodynamic damping can be found from the following
equation:

xpk ¼ rVDCd=2mok; ð11Þ

where r is the air density (1.225 kg/m3), V the wind velocity, Cd the drag coefficient, D the cable
diameter, and ok the cable’s linear modal frequencies. When the cable is moving normal to the
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direction of the wind

xnk ¼ rVDCd=4mok: ð12Þ

A drag coefficient of Cd=1.2 [17], for cable A (cable diameter is 0.25m), is equivalent to the
drag that the cable will have with a wind speed of about 5m s�1. Table 1 shows the damping
values found using these parameters and applying Eqs. (11) and (12).
Macdonald [21] estimated damping values for a cable with similar characteristics to cable A,

from on-site measurements, and found that the cable’s actual, normal to wind, damping xn1 is
near 0.0015. This value is close to that found theoretically (0.00155) from Eq. (11) and this,
together with the cable’s structural damping, was used as the damping value for the analyses of
the cable with structural and aerodynamic damping. As only negligible differences (
2%) in the
cable’s response, with this increase in damping, were observed, only the results from the analyses
performed using only structural damping are presented.
As in Ref. [15], a much higher damping value of 3.3%, for cable A, was chosen for a third set of

analyses. These were performed to investigate the effect that an extreme damping value would
have on the cable’s response. By considering extreme changes in the parameters that govern the
aerodynamic damping of the cable, a larger cable damping value was found. The drag coefficient
was increased from Cd=1.2 to Cd=2.1, for a wind velocity of 30m/s�1, even though this is
highly, unlikely as Cd tends to drop from Cd=1.2 to Cd=0.4 after a wind velocity of about 10m/
s�1. Revised increased damping values are also shown in Table 1. The implementation of both
damping values within the FEA was achieved through the use of Rayleigh Damping.
As can clearly be seen from Fig. 7a, the analyses reveal regions of large-amplitude cable

vibrations occurring at O ¼ 0:5onl
1 ; O ¼ 1:0onl

1 ; O ¼ 1:3onl
1 and O ¼ 2:0onl

1 ; for the stochastic
cable support excitation input. These instabilities are very similar to those found when applying
sinusoidal cable support excitation, as they occur at the same frequencies. Fig. 7b represents the
response of the same cable with the same parameters under the influence of the sinusoidal cable
support excitation, as determined by Georgakis et al. [15]. Greater differences between the regions
of large-amplitude cable vibrations are found, though, when comparing out-of-plane cable
responses to the applied stochastic and sinusoidal cable support excitations. Fig. 7c represents the
out-of-plane response of the cable to a stochastic cable support excitation, while Fig. 7d
represents the out-of-plane response of the same cable to a sinusoidal cable support excitation.
Fig. 7c clearly shows that the cable can exhibit large-amplitude out-of-plane displacements at
various circular excitation frequencies from between O ¼ 0:0onl

1 and O ¼ 2:3onl
1 ; when excited by

a stochastic input, even though this does not occur for a sinusoidal input.
Figs. 8a–e show a one-to-one comparison between in-plane cable responses to varying

sinusoidal and stochastic cable support excitations. Each one of these is for a given maximum
excitation amplitude, Dmax:
Table 1

Theoretical x damping values for cable A, applied in SOLVIA using Rayleigh damping

xp when cable velocity parallel to wind xn when cable velocity normal to wind

Low damping 0.00310 0.00155

High damping 0.0325 0.0163
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Fig. 7. (a) In-plane cable response to stochastic support excitation with x ¼ 0:05%; y ¼ 20:31: (b) In-plane cable

response to sinusoidal support excitation with x ¼ 0:05%; y ¼ 20:31: (c) Out-of-plane cable response to sinusoidal

support excitation with x ¼ 0:05%; y ¼ 20:31: (d) Out-of-plane cable response to sinusoidal support excitation with

x ¼ 0:05%; y ¼ 20:31:

C.T. Georgakis, C.A. Taylor / Journal of Sound and Vibration 281 (2005) 565–591576
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Fig. 7. (Continued)
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Two main observations can be extracted from these comparisons. Firstly, cable
vibration amplitudes, resulting from stochastic cable support excitation, are consistently larger
than those resulting from sinusoidal cable support excitation, in the lower excitation frequencies
ðO ¼ 0:0onl

1 ! 1:6onl
1 Þ: Also, cable vibration amplitudes resulting from stochastic cable

support excitations are generally smaller than those resulting from sinusoidal cable support
excitations in the higher excitation frequencies ðO ¼ 1:6onl

1 ! 2:3onl
1 Þ: Secondly, ‘‘cable-stiffen-

ing’’ does not occur for stochastic cable support excitations to the same degree as it does
for sinusoidal cable support excitations [15], at the higher amplitude and higher frequency
excitations. The second observation may be directly related to the first, in that cable-stiffening
results from very large-amplitude cable vibrations. This is described in more detail in Section 7,
below.
Figs. 9a–e show one-to-one comparisons between equivalent out-of-plane cable responses to

sinusoidal and stochastic cable support excitations. These, again, are for a maximum given
excitation amplitude Dmax: The observations here are very similar to those extracted from the
previous comparison. In the excitation frequency range O ¼ 0:0onl

1 ! 1:6onl
1 ; out-of-plane cable

displacements for the stochastic support excitations exist, where for the sinusoidal support
excitations they do not. Also, in the frequency range O ¼ 1:6onl

1 ! 2:3onl
1 ; maximum cable

displacements are consistently larger for sinusoidal support excitation than for the stochastic
support excitation. It is clear that the random nature of the cable’s response, in combination with
the random nature of the cable excitation at the higher excitation frequencies, does not allow the
cable’s out-of-plane parametric response to ‘kick-in’. Longer duration steady-state excitations are
necessary for the formation of a significant response, in the higher excitation frequencies. This is
not the case for the lower excitation frequencies as cable is almost void of any kind of parametric
out-of-plane response due to sinusoidal excitation.

4.3. High damping instabilities

The highly damped cable (3.3%) analyses also gave some very interesting results, which can be
viewed by examining Figs. 10a and b. When comparing Figs. 10a and 7a it is evident that the
higher damping acts in reducing total in-plane cable displacements significantly. Cable
displacement reductions are similar for both stochastic and sinusoidal cable excitations. When
comparing Figs. 10b and 7c, though, this reduction is not as evident. Again, for the excitation
frequency range O=onl

1 ¼ 0:0! 1:6; maximum out-of-plane cable displacements are reduced with
an increase of damping, but for the excitation frequency range O=onl

1 ¼ 1:6! 2:3; maximum
cable displacements increase. This increase in maximum out-of-plane cable displacements with an
increase in damping can be attributed to the effect that damping has on stabilising a cable’s energy
intake ‘rhythm’ by stabilising energy intake levels. With low levels of damping, less input energy is
lost with every cycle. This, although, has the effect of destabilising the cables ‘rhythm’ by
introducing sharp changes in energy levels. This is only true, though, for the extreme support
excitation parameters of b ¼ 0:8 and b ¼ 1:0:
Note that Figs. 7a–10b were found using both gradually increasing transient stochastic and

sinusoidal time-histories and abrupt transient stochastic and sinusoidal time-histories. No
differences in the maximum cable displacement amplitudes were found between gradually
increasing and abrupt transient time-histories.
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Fig. 8. (a) In-plane cable response to stochastic vs. sinusoidal excitation when b ¼ 0:2; x ¼ 0:05%; y ¼ 20:31: (b) In-
plane cable response to stochastic vs. sinusoidal excitation when b ¼ 0:4; x ¼ 0:05%; y ¼ 20:31: (c) In-plane cable
response to stochastic vs. sinusoidal excitation when b ¼ 0:6; x ¼ 0:05%; y ¼ 20:31: (d) In-plane cable response to
stochastic vs. sinusoidal excitation when b ¼ 0:8; x ¼ 0:05%; y ¼ 20:31: (e) In-plane cable response to stochastic vs.

sinusoidal excitation when b ¼ 1:0; x ¼ 0:05%; y ¼ 20:31:

C.T. Georgakis, C.A. Taylor / Journal of Sound and Vibration 281 (2005) 565–591 579
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Fig. 8. (Continued)
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Fig. 8. (Continued)
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4.4. Small stochastic cable support excitation

As in Ref. [15], a series of analyses was also performed to see what effects a very small stochastic
cable support excitation ðb ¼ 0:01Þ had on the response of cable A. Fig. 11 represents the response
of cable A to the small stochastic support excitation with both low (0.05%) and high (3.3%) levels
of damping. Large-amplitude cable responses are concentrated around the excitation frequencies
O ¼ 1:0onl

1 and O ¼ 1:8onl
1 : Examining Fig. 11, one can note that at excitation frequencies O ¼

1:0onl
1 and O ¼ 1:8onl

1 ; a maximum cable support displacement of b ¼ 0:01; or Dmax ¼

0:0000924m; for a 0.05% damped cable, will induce a cable response of approximately u ¼

0:016 and u ¼ 0:0044m; respectively. This is a ratio of 1:173.83 and 1:47.41, respectively. Thus, a
bridge response, with an rms value equal to half of the maximum expected deck displacement of
Dbridge
max ¼ 0:01m; or 1 cm, at these frequencies, would induce maximum cable displacements (for a

0.05% damped cable) of about u ¼ 1:74 and u ¼ 0:47m; respectively.
5. Effects of varying stochastic time-histories

The maximum cable response, to the stochastic cable support excitation, was calculated using
several different stochastic time-histories. The maximum cable response can, in most cases, been
found by measuring the maximum response of the cable to just one very long stochastic time-
history, i.e. the maximum response from different time-histories, with the same b; O=onl

1 and rms



ARTICLE IN PRESS

Fig. 9. (a) Out-of-plane cable response to stochastic vs. sinusoidal support excitation when b ¼ 0:2; x ¼ 0:05%; y ¼

20:31: (b) Out-of-plane cable response to stochastic vs. sinusoidal support excitation when b ¼ 0:4; x ¼ 0:05%; y ¼

20:31: (c) Out-of-plane cable response to stochastic vs. sinusoidal support excitation when b ¼ 0:6; x ¼ 0:05%; y ¼

20:31: (d) Out-of-plane cable response to stochastic vs. sinusoidal support excitation when b ¼ 0:8; x ¼ 0:05%; y ¼

20:31: (e) Out-of-plane cable response to stochastic vs. sinusoidal support excitation when b ¼ 1:0; x ¼ 0:05%; y ¼

20:31:

C.T. Georgakis, C.A. Taylor / Journal of Sound and Vibration 281 (2005) 565–591582



ARTICLE IN PRESS

Fig. 9. (Continued)
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Fig. 9. (Continued)
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values, was always the same. Thus, the effect of varying the stochastic time-histories, for the
determination of cable response, is negligible if the stochastic time-history is long enough. As
previously stated, it was found that the stochastic time-histories with a length t ¼ 120 s were long
enough to determine the maximum response of the cable.
6. Equivalent relative input energy

It is important to note that all of the previous stochastic vs. sinusoidal comparisons are made
using cable responses to stochastic and sinusoidal time-histories, which have the same maximum
cable end displacements, i.e. bstochastic ¼ bsinusoidal: Even though the maximum level of excitation
for each comparison is equal, the rms values of the support excitations are not. This means that
the total ‘‘relative’’ input energy supplied by the stochastic support excitation is not equal to that
supplied by the sinusoidal support excitation. A comparison between the total amount of relative
input energy supplied by the stochastic and sinusoidal support excitations can be made by
examining the rms levels of the respective time-histories. The stochastic time-history will produce
a relative input energy Estoch

i ; which will be equal to the product of the sinusoidal relative signal’s
input energy Esin

i and a relative energy coefficient e. Thus

Estoch
i ¼ eEsin

i : ð13Þ
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Fig. 10. (a) In-plane cable response to stochastic support excitation when x ¼ 3:3%; y ¼ 20:31: (b) Out-of-plane cable
response to stochastic support excitation with b ¼ 3:3%; y ¼ 20:31:
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Fig. 11. In-plane cable response to low level stochastic support excitation with b ¼ 0:01; x ¼ 0:05% & 3.3%, y ¼ 20:31:
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It follows that if eo1; then the relative stochastic input energy will be less then that of the
equivalent sinusoidal time-history, which has the same Dmax or b as that of the stochastic time-
history; if e41; then the opposite will be true.
Due to the inherent geometric nonlinearity of the cable under gravity, it is more appropriate to

calculate the relative cable input energy by examining the energy of the linear mass–spring–dash-
pot damper system (Fig. 1), which acts as the cable’s support. By examining the kinetic energy of
the support, for both stochastic and sinusoidal support excitations, it is found that Eq. (13) also
holds true for kinetic energies [21]. Thus

Estoch
k ¼ eEsin

k ; ð14Þ

where Estoch
k and Esin

k are the kinetic energies of the stochastic and sinusoidal support motions,
respectively.
Manipulation of Eq. (14) leads to

e ¼
ðDstoch

rms Þ
2

ðDsin
rmsÞ

2
; ð15Þ

where: Dstoch
rms and Dsin

rms are the stochastic and sinusoidal support excitation rms values,
respectively.
Fig. 12 shows the average values of e for the above-mentioned (Section 4) stochastic vs.

sinusoidal comparisons. As can be seen from Fig. 12, e is less than 0.3 throughout the excitation



ARTICLE IN PRESS

Fig. 12. Input energy coefficient e when bstochastic ¼ bsinusoidal:
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frequency range, i.e. the total relative stochastic input energy is always less than the compared
sinusoidal input energy.
The one-to-one comparisons of Section 4 are valid in terms of maximum support

displacements, but are not valid when comparing total relative stochastic vs. sinusoidal input
energies. Thus, several critical parameter pairs within the excitation-forcing frequency
ðb2O=onl

1 Þ parameter plane were chosen and analysed to measure what effect the stochastic
support excitations would have on the cable’s response, when e ¼ 1 or Dstoch

rms ¼ Dsin
rms: Fig. 13

shows a comparison of in-plane maximum cable stresses ratios, smax=sy; obtained by analysing
the response of the cable to stochastic support excitation time-histories when bstochastic ¼ bsinusoidal
and Dstoch

rms ¼ Dsin
rms:

Through examination of Fig. 13 it can be concluded that a comparison between cable responses
from sinusoidal and stochastic support excitations is more appropriate when considering
bstochastic ¼ bsinusoidal: Even though stress levels within the cable are increased for both type of
excitation level, it is clearly more reasonable, both in terms of displacement and stress levels, to
compare cable responses to stochastic and sinusoidal support excitation when bstochastic ¼
bsinusoidal:
As can be seen from Fig. 12, though, the relative input energy from the stochastic support

excitations is 66 and 85% less than that found from the equivalent sinusoidal time-history, even
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Fig. 13. Comparison of maximum cable stress ratios between sinusoidal and stochastic loading.
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when bstochastic ¼ bsinusoidal: This implies that a stochastic time-history that has between 66–85%
less relative input energy than the equivalent sinusoidal time-history when bstochastic ¼ bsinusoidal;
can produce a maximum cable response that is equivalent or greater to that found from the
sinusoidal time-history.
7. Cable stiffening

According to Georgakis et al. [15], cable stiffening was observed for higher amplitude cable
displacements due to sinusoidal cable end displacements. Although this phenomenon is not as
pronounced, here again there is an indication that cable stiffening does occur at the higher
excitation frequencies 2:0onl

1 pOp2:3onl
1 : This can be observed, especially for the higher

amplitude support excitation of b ¼ 1:0; as a higher than expected maximum cable displacement,
for the prescribed excitation frequency.
8. Assumptions

All of the analyses were undertaken with the assumption that the cable stresses were always less
than those required for material yielding ðsy ¼ 1500MPaÞ and, as such, the stresses were
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continuously monitored. Unlike the analyses in Ref. [15], cable stresses, in these analyses, did
manage, in a few cases, to reach and surpass the material yield stress. This did not occur for the
analyses performed when considering bstochastic ¼ bsinusoidal; but did occur at O ¼ 2:0onl

1 and O ¼

2:3onl
1 for the analyses performed when Dstoch

rms ¼ Dsin
rms and b ¼ 0:5:

Additionally, it has been assumed that the support is not affected by the cable’s response, but
this may not necessarily be true. It is important that a cable’s support or end mass is quantified to
determine whether the cable has an influence over the support excitation or not. If the support
mass is sufficiently larger than that of the cable, the cable will have little or no influence on the
support and its excitation. A support mass to cable mass ratio of 500:1 or greater was found to be
enough to avoid the more significant effects of cable–support interaction. The effects of this
interaction, although, are examined in greater detail by Georgakis [22].
9. Concluding remarks

Even though sinusoidal cable support excitation is relevant and real in actual structures,
stochastic cable support excitation occurs more frequently. While the response of a cable to
sinusoidal cable support excitation has been studied in detail by the current authors and other
researchers in the past, research into the response of a cable to stochastic cable support excitation
seems to have been left wholly untouched.
Results from the analyses of the response of a cable to stochastic support excitation

are interesting. For low structural and aerodynamic damping (0.05–0.15%), the cable’s
maximum in-plane displacements are very similar, both in amplitude and in pattern, to those
found from analyses using sinusoidal cable support excitation. Large-amplitude cable vibrations
tend to occur at the specific excitation frequencies of O ¼ 0:5onl

1 ; O ¼ 1:0 onl
1 ; O ¼ 1:3onl

1 ; O ¼

1:8onl
1 and O ¼ 2:0onl

1 : Out-of-plane displacements are very different, though. For the excitation
circular frequency range of 0:0onl

1 oOo1:6onl
1 ; out-of-plane cable displacements exist and are

fairly significant, especially when compared to those found using sinusoidal cable support
excitations. For the excitation circular frequency range of 1:6onl

1 oOo2:3onl
1 ; out-of-plane cable

displacements resulting from stochastic cable support excitation are consistently smaller than
those found resulting from sinusoidal cable support excitation.
Higher aerodynamically damped (3.3%) cable response analyses showed that the in-plane

response of the cable to stochastic support excitation is very similar to the cable’s response to
sinusoidal cable support excitation. The out-of-plane response of the cable resulting from
stochastic support excitation was also similar to that resulting from sinusoidal support excitation,
with the higher levels of damping. When comparing the high vs. low damping cable responses to
stochastic support excitation, it was found that while the higher damping reduced out-of-plane
displacements in the lower excitation frequencies, it actually increased out-of-plane cable
displacements in the higher excitation frequencies.
Comparisons of in-plane and out-of-plane cable responses to stochastic and sinusoidal support

excitations should in most cases be undertaken using like-for-like maximum support
displacements ðbstochastic ¼ bsinusoidalÞ and not like-for-like rms values ðDstoch

rms ¼ Dsin
rmsÞ: It is

important to note that even when bstochastic ¼ binusoidal; a stochastic cable end displacement with
a relative input energy, which is between three to six times smaller than the equivalent relative
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sinusoidal input energy, can induce a maximum cable response that can be equal to or greater
than that which can be induced by an equivalent sinusoidal input time-history.
Cable stiffening does occur for stochastic cable support excitations at higher excitation

frequencies, but to a lesser extent than for higher amplitude and higher frequency sinusoidal cable
support excitations.
Finally, it was found that, very large cable vibrations can occur for very small cable support

displacements and can (due to a cable’s low inherent damping) continue, even after the initiating
support excitation (cable end displacements) have subsided. One unit of support displacement can
lead to an in-plane cable displacement of up to 174 units.
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